If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+9X-246=0
a = 1; b = 9; c = -246;
Δ = b2-4ac
Δ = 92-4·1·(-246)
Δ = 1065
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{1065}}{2*1}=\frac{-9-\sqrt{1065}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{1065}}{2*1}=\frac{-9+\sqrt{1065}}{2} $
| (7x^2-x-4)+(x^2-2x-3)+(2x^2+3x+5)=0 | | 5k^2+3=-50 | | 4(x-9)+6(-5-12x)=x-4+1-6x | | -1/2x=11 | | 3n^2+11n-20=0 | | 5(6z+1)-7=148 | | 6/6b+4=2/b-4 | | (3x+21/6)+(x+21/5)=14 | | 3n^2-20=-11n | | 51-a=21+a | | f(-3)=-9+3 | | -6(12x-5)=-72x-64 | | b/13-3b/13=4/13 | | -2.8=z-0.5 | | (x+3)/14=(3/7)+((x-9)/6) | | 0.3(10)+0.15x=0.1(10)+0.2x | | a²+3=28 | | 7(-3y+2)=8(y-2) | | -12(5-6x)-10=-12(5+7x)-10 | | 9x+3(×-4)=10(×-5)+7 | | -12(5-6x)-10=-12(5+7 | | 4x-7x+64=5x+32 | | -5/2=3/4*z+1/2 | | 7(-3y+2)=8(3y-2 | | 4(n-3)+4(3+8n)=-4n-4n | | 3x-2-x=10 | | -1/2x+12=23 | | -6x-12+8x=12-4x | | 9x+4x-6x=8+6 | | x/4=-5/7 | | 2/2x=10 | | 6x-(4x+5)=8x-23 |